Темы мартовского, апрельского и майского номеров журнала Computer (IEEE Computer Society, V. 55, No. 3, 4, 5, 2022) – готовность технологий искусственного интеллекта и соответствующих методов программной инженерии к широкому применению, интеграция алгоритмов в повседневную жизнь и игровые технологии нового поколения.
Интеллектуальные системы, работающие на основе алгоритмов машинного обучения, требуют больших объемов размеченных данных. Используя фактические сведения справочного характера, можно восполнять нехватку размеченных данных для обучения алгоритмов, причем для многих практических применений удобно организовывать справочные сведения в форме графа знаний. Объединение сведений из графов знаний с обучающими выборками позволяет существенно улучшить результативность работы алгоритмов машинного обучения, в том числе используемых в системах предоставления рекомендаций и анализа структуры сообществ. Графы знаний позволяют не только повысить точность работы таких систем, но и обеспечить объяснимость получаемых результатов.
Традиционные системы хранения не могут расширяться бесконечно или хотя бы достаточно быстро, что особенно критично для задач глубинного обучения, в случае когда данных больше, чем может поместиться на одной машине. Поэтому для поддержки работы с большими данными все чаще применяются распределенные горизонтально масштабируемые архитектуры хранения и обработки в памяти.
Темы майского, июньского, июльского и августовского номеров журнала Computer (IEEE Computer Society, Vol. 51, No. 5–8, 2018) — средства машинного обучения для мобильных и встроенных систем, «наука о Всемирной паутине», проблема доверия устройствам Интернета вещей и цифровые консультанты в сфере медицины.
Машина Цетлина построена на принципах, в корне отличных от всех известных сегодня подходов к реализации искусственного интеллекта, и уже показала лучшие результаты, чем альтернативные подходы. Эта машина может стать качественно новым инструментом, позволяющим на обычных универсальных компьютерах решать задачи распознавания образов, лингвистики, диагностики и прогнозирования.
Материал книги будет полезен как для знакомства с теоретическими основами глубинного обучения, так и для практического применения. Авторы приводят наглядные примеры использования алгоритмов глубинного обучения, включающих алгоритм оптимизации, функции стоимости и пр. Здесь же описаны факторы, ограничивающие способность традиционного машинного обучения к обобщению
Даже если специалисты компании не имеют опыта разработки алгоритмов, эксперименты в области машинного обучения можно начинать, пользуясь готовыми инструментами и API, отмечают аналитики.
Получение контекстных сведений по показаниям датчиков имеет большое значение в связи с ростом количества устройств Интернета вещей, которые будут генерировать такие данные в гигантских объемах. Однако эта область пока не привлекла достаточного внимания исследователей и специалистов по машинному обучению. Применение и поиск новых архитектур глубинного обучения — перспективная область исследований.
Нейронные сети позволяют находить скрытые связи и закономерности в текстах, но эти связи не могут быть представлены в явном виде. Нейронные сети — пусть и мощный, но достаточно тривиальный инструмент, вызывающий скептицизм у компаний, разрабатывающих промышленные решения в области анализа данных, и у ведущих компьютерных лингвистов.