В Сбербанке России работа с данными считается одним из важнейших направлений для роста бизнеса – здесь строят организацию, «направляемую данными» (data-driven), и уже накопили в этом деле немалый опыт. Елена Ивашечкина, заместитель директора департамента корпоративных клиентов Сбербанка, – один из ключевых докладчиков VI Российского форума Big Data’17, который проводит издательство «Открытые системы», – рассказала читателям «Директора информационной службы» (CIO.ru) о том, какое место занимают Большие Данные в деятельности департамента. Ивашечкина отвечает за развитие отношений с клиентами, управление Большими Данными и предсказательными моделями, а также за создание уникального клиентского опыта.

 

Какие основные задачи вы решаете и как используются для этого Большие Данные?

Наш департамент отвечает за стратегию работы с данными для всего корпоративного блока, мы являемся главной службой по данным – Chief Data Office – в рамках блока.

Вместе с ИТ-подразделениями мы работаем на всех участках цепочки создания ценности из данных – от сбора сырых данных до их агрегации, построения моделей и предоставления потребителям продуктов, улучшенных благодаря работе с данными.

Наше подразделение выполняет несколько основных задач в рамках корпоративного блока.

Елена Ивашечкина, заместитель директора департамента корпоративных клиентов Сбербанка:
«Большие Данные работают с технологиями машинного обучения и дают отдачу быстро. Всего за год плотной работы с data science мы уже видим результат использования модели, которая увеличивает конверсию и доходность»

Мы агрегируем данные, задаем правильную инфраструктуру и модель данных для всех отделов. Это наша задача номер один, так как данные обеспечивают 70-80% бизнес-результата. Коллеги могут использовать их для своих целей – например, для создания продуктов или актуализации перечня документов.

Вторая наша задача – увеличение доходов от вторичных продаж, зависящих, помимо прочего, от удовлетворенности клиентов теми продуктами, которые мы им предлагаем. Здесь тоже множество задач, связанных с качественными данными и параметрами их обработки, и снова инфраструктура Big Data выходит на первое место. Число клиентов огромно, объем данных колоссален, и эффективно обрабатывать их на старых технологиях невозможно.

Третий блок задач, который мы выстраиваем в течение последнего года, связан с data science – разработкой моделей на основе собираемых данных и использованием методов машинного обучения. Это новое перспективное для нас направление, в том числе и с точки зрения получения дохода. Мы делаем модели как для себя, с целью увеличения вторичных продаж и конверсии (процента превращения потенциальных продаж в реальные), так и для других структурных подразделений, например департамента кредитных продуктов и кредитного мониторинга, оцениваем склонность клиента задержать выплаты по кредиту. В рамках внедряемого в банке Agile-подхода департамент корпоративных клиентов – сквозная структура, предоставляющая своих специалистов по data science для построения моделей данных на время реализации проектов в разных командах и подразделениях. У нас уже есть хорошие модели оттока, позволяющие принять меры для сохранения клиента, и мы внедряем их в промышленную эксплуатацию. Причем эти модели дают возможность прогнозировать не только полный уход клиента, но и сокращение использования наших услуг.

Четвертая...

Это не вся статья. Полная версия доступна только подписчикам журнала. Пожалуйста, авторизуйтесь либо оформите подписку.
Купить номер с этой статьей в PDF