Наш журнал недавно обращался к теме беспроводных сетей передачи данных (см.: Сети, 1997, # 6, с. 52). Тогда были изложены основы технологии Radio-Ethernet, сегодня же мы предлагаем поближе познакомиться с оборудованием для радиосетей на примере беспроводных мостов трех производителей, прочно закрепившихся на российском рынке.

Для передачи больших объемов информации между удаленными компьютерами их обычно объединяют в сеть. Традиционно сети строятся на основе арендуемых или специально прокладываемых проводных линий связи - чаще всего, коаксиальных или оптоволоконных. Пропускная способность кабельных каналов связи с лихвой удовлетворяет потребности большинства пользователей. Но любое кабельное хозяйство - это дорогостоящая недвижимость, которая требует значительных начальных капиталовложений (более 10 тыс. дол. за километр) и постоянных эксплуатационных затрат. Современная технология радиосвязи предлагает быстрый, удобный и экономичный способ создания и объединения скоростных сетей, находящихся на значительных расстояниях друг от друга.

Передача цифровых потоков по радиоканалу не является новейшим достижением науки и техники, однако раньше применение соответствующих систем ограничивалось их высокой стоимостью и ориентацией на стационарных пользователей и большие объемы трафика. В начале 90 гг. произошел технологический прорыв в области производства компонентов СВЧ-оборудования и обработки цифровых сигналов, что привело к перевороту на рынке средств радиосвязи. Принятие международных стандартов, выделение новых частотных диапазонов, а также обвальное падение цен на аппаратуру способствовали интенсивному развитию этой отрасли за рубежом. Предлагаемое на рынке радиооборудование позволяет строить сети связи различных конфигураций и эффективно решать проблему "последней мили".

В последнее время объединение территориально-распределенных компьютеров в единую радиосеть с целью решения коммерческих задач стало не только технически целесообразным, но и экономически выгодным. Всплеск спроса на сетевое радиооборудование - это не временное явление, поскольку современные хозяйственные механизмы нуждаются в эффективной и мобильной связи для большого числа пользователей, а эту возможность предоставляет только радио.

Обширная номенклатура радиооборудования, предлагаемого различными компаниями, может быть разделена на следующие категории.

Компактные радиорелейные системы с пропускной способностью 2-20 Мбит/с. Дальность связи более 100 км обеспечивается за счет сегментирования линии по 15-30 км. Полный комплект оборудования для одного сегмента стоит не менее 30 тыс. дол.

Радиомодемы производительностью 0,1-2 Мбит/с используются для быстрого построения персональных линий связи длиной до 100 км. Могут применяться в режиме радиорелейных линий. Пара модемов и сопутствующее оборудование стоят около 10-20 тыс. дол.

Сетевое радиооборудование предназначено для беспроводного объединения множества пользователей, которые распределены на площади до 1 км2, в общую сеть, подобную кабельной. Это оборудование также позволяет объединять ЛС, разнесенные на расстояния до 15 км. Пропускная способность - до 10 Мбит/с. Стоимость пары мостов, необходимых для связи двух сетей, составляет приблизительно 5 тыс. дол.

В России сетевое радиооборудование применяется как по прямому назначению, так и в качестве радиомодемов, радиоудлинителей телефонных линий или для построения радиорелейных систем. Для сравнения характеристик аппаратуры различных производителей удобно использовать классификацию компании Aironet, поскольку оборудование этой фирмы получило широкое распространение в России:

  • сетевые адаптеры или карты (Client Card) обеспечивают соединение компьютеров по радиоканалу как между собой, так и с устройствами доступа к сети или сетевыми мостами. Устанавливаются в слот расширения (MCA, ISA, PCMCIA) или на параллельный порт компьютера;
  • устройства доступа (Access Point) служат для того, чтобы подключать по радиоканалу к кабельной сети (Ethernet или Token Ring) компьютеры, оснащенные сетевыми радиокартами;
  • беспроводные мосты (Bridge) предназначены для объединения территориально разнесенных компьютерных сетей; подключаются к сетевому кабелю. Отдельные компьютеры, оборудованные сетевыми радиоадаптерами, могут подключаться к ним по радиоканалу;
  • ретрансляторы (репетиры) применяются, если требуется повысить дальность связи или преодолеть влияние препятствий;
  • специальное антенно-фидерное оборудование используется при необходимости увеличить энергетику радиолинии или обеспечить требуемую диаграмму направленности антенн.
  • Характеристики оборудования разных фирм удобно сравнивать по техническим параметрам беспроводных мостов - самых критичных устройств в составе беспроводных сетей наиболее распространенных конфигураций. Такие устройства являются сложными радиосистемами, включающими в себя приемопередатчик для СВЧ-диапазона с устройствами синхронизации и антенно-фидерным трактом; корреляционный приемник; сетевой и системный контроллеры; блок питания. Сравнительная характеристика используемых в России беспроводных мостов приведена в таблице.

    Дальность связи в пределах прямой видимости ограничивается только энергетикой радиоканала. Для увеличения дальности и "обхода" препятствий на трассе применяются ретрансляторы. Метеоусловия (дождь, снег, туман и др.) в диапазонах частот менее 6 ГГц не оказывают заметного влияния на характеристики радиоканала, однако лед и снег ухудшают параметры антенны. Надежность и дальность связи сильнее всего страдают от амплитудных замираний, которые возникают в связи с интерференцией радиоволн, отраженных от препятствий и поверхности Земли. В России широко используется наращивание энергетики радиоканала за счет мощного передатчика (500 мВт = 27 дБ/м) и антенн с большим усилением (24 дБ), поскольку эффективно излучаемая мощность (до 50 дБ/м) не ограничена стандартом (36 дБ/м), принятым в США.

    Значения дальности связи, приведенные в таблице, определялись при помощи штатных антенн. Дальность связи внутри помещения (офиса или склада) зависит от его размеров, загруженности мебелью, наличия перегородок, а также расположения антенн. Оптимальным считается размещение антенн на высоте 2 м от пола. При связи между зданиями применение вынесенных высоконаправленных антенн позволяет увеличивать дальность пропорционально корню квадратному из коэффициента усиления антенны. Так, две параболические антенны (коэффициент усиления 23 дБ = в 200 раз) обеспечивают максимальную дальность связи до 20 км. Однако неизбежные потери в антенных кабелях (10-15 м; 0,2 дБ/м) сокращают дистанцию надежной связи. При отсутствии прямой видимости между антеннами связь практически невозможна.

    В рассматриваемых системах в основном применяются следующие типы антенн:

  • всенаправленные штыревые (диполи) с усилением около 2 дБ (могут быть установлены прямо на карты и мосты);
  • всенаправленные с усилением около 11 дБ используются для организации зоны устойчивого доступа;
  • директорные со средними коэффициентами усиления (8-16 дБ) могут применяться с любым типом оборудования;
  • апертурные (усиление 20-30 дБ) используются для обеспечения максимальной дальности связи (обычно устанавливаются на мачтах).
  • Мы не рассматриваем сетевое радиооборудование диапазона 900 Мгц, поскольку в России этот диапазон лицензирован для радиотелефонии и оборудование диапазона 2,4 ГГц здесь более популярно. Следует отметить, что в Северной Америке оборудование беспроводных компьютерных сетей разрабатывалось с учетом возможности безлицензионного использования частот в диапазонах ISM. В Российской Федерации подобные системы в обязательном порядке должны быть зарегистрированы в органах государственного надзора, что приводит к значительным дополнительным расходам и непредсказуемым увеличениям сроков развертывания систем.

    Радиочастотные параметры беспроводного сетевого оборудования, выпускаемого всеми производителями, определяются американским стандартом FCC'94. Требования этого стандарта призваны минимизировать взаимные помехи пользователей, что достигается в основном за счет ограничения излучаемой мощности и спектральной плотности сигналов. Эффективно излучаемая мощность сигнала (EIRP) аппаратуры, включающая в себя коэффициент усиления антенны, не должна превышать +36 дБ/м, а спектральная плотность излучаемого сигнала +8 дБ/м (6 мВт) в полосе 3 кГц. Действует также ряд других ограничений, например база сигнала систем DSSS не может быть менее 11. Для систем FHSS использование одной частоты ограничено временем 400 мс в интервале 20 с, что соответствует базе около 50. Фиксируя минимальную базу сигналов FHSS, стандарт предопределяет их лучшую помехозащищенность.

    Деление диапазона на несколько частотных полос обусловлено желанием производителей снизить уровень взаимных помех, создаваемых независимыми радиосетями, которые работают на одной территории. Однако в целях удешевления аппаратуры каналообразующие устройства (канальные фильтры) не применяются, а соответственно, близкое расположение работающего на другой частоте источника помех приводит к ухудшению функционирования системы связи. Несмотря на то, что широкополосные несущие сигналы (обозначенные в таблице как FHSS и DSSS) обеспечивают подавление узкополосных и импульсных помех, проблема помехоустойчивости каналов связи стоит весьма остро, поскольку диапазон 2,4 ГГц широко используется индустриальными и бытовыми СВЧ-устройствами.

    Беспроводные мосты большинства производителей обеспечивают подключение только к кабельным сетям Ethernet. Часть производителей выпускает несколько модификаций мостов, допускающих подключение к сетям Token Ring, Arcnet и LocalTalk. При этом сетевой протокол радиосегмента является прозрачным для протоколов, применяемых в кабельных частях сети. Для управления сетевым оборудованием многие производители используют стандартный протокол SNMP.

    Почти все предлагаемое на рынке оборудование поддерживает мобильных пользователей принцип роуминга). Как правило, эта функция реализуется программными средствами и сводится к исключению возможных кольцевых пересылок пакетов. Некоторые производители предусматривают более сложный аппаратный алгоритм, включающий в себя измерение уровня принимаемого сигнала и поиск оптимальной соты.

    Информация, передаваемая по радиоканалу, легко доступна, поэтому проблема защиты данных становится особенно важной для коммерческих приложений. Считается, что первичная защита осуществляется за счет образующего кода, используемого при формировании широкополосной несущей. Поскольку для систем DSSS этот код единственный, а в системах FHSS алгоритм перебора частот задается идентификационным номером, то первичное кодирование не представляет сложности, а соответственно, несложно и преодолеть такую защиту. Однако системы FHSS считаются несколько более устойчивыми к несанкционированному доступу. Аппаратное скремблирование, самый эффективный способ контроля за доступом к передаваемой информации, редко применяется в сетевом радиооборудовании, так как это значительно удорожает аппаратуру.

    Конструктивное исполнение радиомоста может сильно меняться в зависимости от предполагаемой конфигурации сети. Так, мосты, предназначенные для внутриофисной связи, чаще всего размещаются в одном корпусе с плоской антенной и питаются от компьютера. Оборудование для линий связи, прокладываемых на большие расстояния, выполняется в отдельном корпусе с собственным источником питания и предполагает применение направленных антенн, размещаемых на наружных радиомачтах. Большая часть сетевого радиооборудования конструктивно рассчитана на использование в закрытом помещении с искусственным климатом.

    В настоящее время на рынке предлагается весьма широкий спектр сетевого радиооборудования. Пользователь может подобрать эффективное решение практически для любой задачи, ориентируясь на цену аппаратуры, пропускную способность сети, диапазон частот, дальность связи, возможность связи с подвижными станциями, наличие скремблирования и другие параметры.


    Владимир Борисов - сотрудник компании DIAMOND Communications. С ним можно связаться по адресу vlad@diamond.ru.

    Основные характеристики беспроводных мостов, доступных на российском рынке

    Показатель

    ARLAN 640-900

    ARLAN 640-2400

    WavePOINT 0101

    WavePOINT 0111..0138

    RadioLAN 10А

    Фирма Aironet, Канада

    Фирма Lucent Technologies, США

    Фирма RadioLAN, США

    Конструктивные характеристики

    Стандартная антенна Диполь 23 см Плоская, 10 x 10 x 1,5 см, кабель 2,5 м Плоская, встроена в корпус
    Габариты, см 20 x 15 x 5 40 x 20 x 5 18 x 7 x 4
    Вес, г 750 2 500 280
    Питание Внешний адаптер, 15-25 В (1 А) Встроенный адаптер, 100/220 В (50 Гц) От компьютера, 5 В (500 мА) -12 В (50 мА)
    Светодиодные индикаторы режимов 9 3 4

    Эксплуатационные характеристики

    Стоимость (в Москве), дол. 2500 2200 2000 (предварительно)
    Диапазон частот, МГц 915 2400 915 2400 5800
    Пропускная способность, Мбит/с 0,86 1-2 2 10
    Дальность связи в помещении, м 80-180 40-90 50-60 30-60 40
    Максимальная дальность связи, м 300 240 120-180 Н/д
    Потребляемая мощность, Вт 20 40 (макс.) 3,5
    Температурный режим, оС -20..+50 0..+40 0..+60

    Характеристики радиоканала

    Диапазон частот, МГц 2400-2485 2400-2485 5725-5875
    Число частотных каналов 5 5 5
    Мощность передатчика, мВт 100 32 50
    Вид сигнала и модуляция DSSS (FHSS) DSSS Амплитудно-фазовая
    База сигнала 11 11 1

    Сетевые параметры

    Кабельная сеть Ethernet (или Token Ring) Ethernet (или Token Ring) Ethernet
    Кабельный разъем BNC, DB-15, RJ-45 BNC, DB-15, RJ-45 RJ-45
    Протокол управления SNMP SNMP Запатентованный
    Роуминг · · ·
    Средства безопасности Пароль Скремблер (дополнительно 390 дол.) -

    Технология ШПС

    Возможность одновременной работы, осуществляемой в асинхронном режиме, независимых многопользовательских радиосистем в общей частотной полосе наиболее эффективно обеспечивается кодовым разделением каналов (Code Division Multiple Access, CDMA). Этот метод множественного доступа к каналу связи основан на применении широкополосных (или шумоподобных) сигналов (ШПС), которые часто обозначают и термином Spread Spectrum ("распределенный спектр"). В системах связи используются, в основном, два метода получения широкополосной несущей: кодовая фазовая модуляция, или метод прямой последовательности (Direct Sequence Spread Spectrum, DSSS), и кодовая перестройка частоты, или метод частотных скачков (Frequency Hopping Spread Spectrum, FHSS)*.

    Следует отметить, что термин ШПС не вполне приемлем при описании коммерческих систем связи, поскольку в них относительная ширина спектра сигналов не превышает 3%. Это приводит к неполному использованию преимуществ ШПС (база - более 10 тыс., относительная полоса - свыше 20%), а именно - устойчивости к интерференционным замираниям, скрытности для постороннего наблюдателя и высокого процента подавления помех. К сожалению, ШПС с большой базой недоступны для коммерческих систем связи, поскольку национальные стандарты для гражданских систем связи ограничивают ширину спектра сигналов. Всеми "достоинствами" такого вида сигналов пользуются только военные. Однако системы FSSS для диапазона 900 МГц, использующие 3% полосы частот, имеют некоторое преимущество перед другими системами с точки зрения интерференционных замираний.

    ШПС получил свое название в связи с тем, что его энергия равномерно распределена в широкой полосе, а это характерно для шумовых процессов. Спектр ШПС должен быть много шире передаваемого информационного сигнала. Следует подчеркнуть, что, в отличие от шума, ШПС является периодическим сигналом. Его период определяется длиной образующего кода, которая в большинстве случаев весьма невелика. В качестве образующего кода DSSS обычно используются бинарные псевдослучайные последовательности. Чем длиннее код, тем вероятнее появление блоков различной длительности и "шумоподобнее ШПС". Большинство систем DSSS применяют для кодирования 11-символьную последовательность Баркера. Ширина спектра DSSS определяется длительностью одного элемента кода. В случае формирования ШПС по методу частотных скачков каждому элементу кода соответствует конкретная частота. При этом спектр ШПС характеризуется большей равномерностью в полосе частот и, следовательно, большей шумоподобностью.

    При передаче информации с помощью ШПС длительность каждого информационного символа соответствует периоду кодовой последовательности. Для наложения информационного сигнала на широкополосную несущую используются стандартные приемы амплитудной, частотной или фазовой модуляции. Отношение ширины спектров шумоподобной несущей и информационного сигнала, называемое базой ШПС (processing gain), определяет коэффициент подавления помех по мощности (примерно квадратный корень из величины базы ШПС ). Для систем DSSS база ШПС соответствует числу элементов образующего кода. Если частоты несущих не повторяются и их спектры не перекрываются, то база сигнала FHSS равна количеству парциальных переключаемых несущих.

    При передаче информации с помощью ШПС требуется синхронизация приемной и передающей сторон по несущей частоте, по тактовым частотам кода и информационного сигнала. Абоненты беспроводной сети должны быть синхронизированы по этим параметрам при вхождении в связь. Протоколы работы радиосети обязательно включают в себя передачу специальных синхронизирующих последовательностей при пересылке каждого пакета, что ограничивает пропускную способность сети. Инициирующие последовательности содержат также идентификационные коды, которые призваны сделать "взаимоневидимыми" сети, работающие в одном диапазоне.

    Идентификаторы не изолируют две (или более) независимые системы связи на физическом уровне. До тех пор, пока базы используемых ШПС малы, корреляционная обработка не способна "подавить" мешающие ШПС. Во избежание коллизий пакетов требуется, чтобы протокол обеспечивал "молчание" всех устройств, находящихся в пределах радиовидимости, пока хоть одно из них работает в режиме передачи. Практически, при одновременной работе нескольких территориально перекрывающихся независимых сетей пересылка пакета в любой из них приводит к переводу в режим ожидания всех устройств в остальных сетях. Это неизбежно n-кратно снижает пропускную способность каждой из них (n - число таких систем). Ухудшение пропускной способности связано и с задержками распространения сигнала. Так, при дальности связи 3 км протокол доступа в сети Radio-Ethernet должен обеспечивать защитные интервалы не менее 10 мкс, а при 30 км - 100 мкс; отсюда - необходимость накопления пакетов и более продолжительное использование радиоканала.

    Пропускная способность радиоканала ограничивается его шумовыми характеристиками и полосой пропускания. В диапазонах 900 МГц и 2,4 ГГц ширина канала не превышает 22 МГц. С учетом распределения энергии информационного сигнала по широкополосной несущей (база ШПС не менее 11) его реальная ширина составляет не более 2 МГц, что соответствует пропускной способности порядка 1-2 Мбит/с. Когда применяются более сложные виды модуляции и достигнуто хорошее отношение сигнал/шум в радиоканале, можно увеличить пропускную способность до 8-16 Мбит/с. Для построения систем с пропускной способностью до 10 Мбит/с требуется использование более высоких диапазонов (например, 5,8 ГГц), которые позволяют обеспечить информационную полосу более 20 МГц.

    Независимые системы, расположенные на одной территории и одновременно работающие в общей полосе частот, являются основным источником помех друг для друга. В CDMA-системах сотовой телефонии необходимая изоляция абонентов реализуется благодаря применению ШПС с большой базой, а также снижению и адаптивному регулированию уровня излучаемой мощности. Что же касается беспроводных систем Radio-Ethernet, ограничения их помехоустойчивости связаны с желанием разработчиков максимально увеличить пропускную способность: большинство таких систем используют ШПС с минимальной разрешенной стандартом базой (11 для систем DSSS и около 50 для систем FHSS). После корреляционной обработки выигрыш в соотношении сигнал/помеха составляет не более 10-16 дБ. Поэтому задача разделения независимых пользователей в беспроводных компьютерных сетях решается, в основном, за счет ограничения величины эффективно излучаемой мощности. Благодаря применению специальных сетевых протоколов взаимовлияние близко расположенных передатчиков приводит лишь к ухудшению эффективной пропускной способности канала, но не к срыву связи.


    * Более подробно методы формирования ШПС описаны в уже упоминавшейся статье "Беспроводные сети передачи данных". - Прим. ред.

    Поделитесь материалом с коллегами и друзьями