Определение

Шины — это соединения маршрутов данных, связывающие центральный процессор компьютера с модулями оперативной памяти и иными устройствами, с которыми он взаимодействует. Системная (front-side) шина связывает центральный процессор с основной памятью компьютера и шинами периферийных устройств. Шина кэш-памяти (backside) — достаточно быстрое соединение, которое центральный процессор использует для обмена информацией с внешней кэш-памятью, в том числе и с кэшем второго уровня. Скорость шины часто характеризуют таким ее параметром, как рабочая частота в мегагерцах.

Что будет, если установить самый новый, самый мощный двигатель в дряблый кузов старенького авто? Самый мощный автомобиль в округе, не так ли? Возможно, если не полетит трансмиссия, не раскрошатся оси и не отлетят крылья, как крыша обветшавшего сарая в вихре торнадо.

Точно так же опытные пользователи компьютеров знают, что, если установить самый современный процессор в рядовую персоналку, это вовсе не обязательно приведет к общему росту производительности. Более того, скорость и эффективность самого процессора в значительной степени зависят от системной шины, которую инженеры создают в расчете на набор микросхем, составляющих его ближайшее окружение.

Важной характеристикой, определяющей реальную производительность процессора, является скорость системной шины — основного конвейера, который процессор использует для связи с остальными компонентами системы. Современные системные шины, такие как 400-мегагерцевый канал в Pentium 4, передают данные со скоростью в трое быстрее, чем 133-мегагерцевая шина, применяемая в процессоре Pentium III.

С другой стороны, шина кэш-памяти второго уровня, которая служит для передачи данных в кэш, действительно работает с тактовой частотой центрального процессора. В достопамятные времена (примерно в середине 1990-х годов) шина кэш-памяти была важным средством поддержки обмена данными. В процессорах Pentium II и Pentium Pro используется так называемая внешняя кэш-память, которая позволяет хранить часто используемые данные ближе (как с точки зрения расстояния, так и с точки зрения времени, необходимого для доступа к ним) к центральному процессору, чем данные, размещаемые в традиционной оперативной памяти. Специальный конвейер связывал процессор с этой кэш-памятью второго уровня, которая использовалась для передачи данных между ними с тактовой частотой процессора. Конкуренты Intel, такие как Advanced Micro Devices, намерены воспользоваться той же самой тактикой.

На кристалле и вне него

Размещение кэш-памяти вне кристалла тем не менее требует определенных компромиссов. Затраты на производство набора из двух микросхем выше, чем на создание одной микросхемы. Кроме того, два отдельных элемента требуют точной компоновки на системной плате. Вдобавок в первых компьютерных системах с Pentium использовались шины памяти с настраиваемыми (и очень дорогими) модулями статической оперативной памяти SRAM в качестве кэш-памяти.

Совсем недавно разработчики микросхем предприняли следующий логический шаг в организации связи между процессором и кэшем: кэш-память второго уровня была интегрирована на кристалл самого процессора. Это снижает требования к размеру процессорного устройства, сокращает затраты на компоновку и позволяет разработчикам переходить на недорогие конвейеры со статической оперативной памятью. Вместо того чтобы использовать внешнюю шину для связи центрального процессора с памятью, разработчики микропроцессоров теперь интегрируют шину кэш-памяти в кристалл.

«Почти все основные процессоры теперь имеют интегрированную кэш-память второго уровня, — отметил Кэвин Крюэлл, аналитик консалтинговой и издательской компании Micro Design Resources, специализирующейся на анализе тенденций в области микропроцессорных технологий. — Шина кэш-памяти теперь размещается непосредственно на подложке микросхемы; по существу, шины как таковой уже не существует».

Но на самом деле говорить об исчезновении отдельной шины кэш-памяти пока рано. Микропроцессоры PowerPC G4 с тактовой частотой 400 или 500 МГц, которыми оснащаются, к примеру, компьютеры Power Mac G4, Cube и ноутбук Titanium компании Apple Computer, продолжают использовать архитектуру отдельной шины кэш-памяти. Процессорное ядро G4 задействует как шину кэш-памяти второго уровня, имеющей емкость 1 Мбайт, так и 64-разрядную шину кэш-памяти, которая дополняется 100-мегагерцевой системной шиной, что позволяет добиться максимальной скорости передачи данных 800 Мбит/с.

Intel и Compaq Computer в любом случае пока не отказываются от шины кэш-памяти. Их перспективные микропроцессоры, 64-разрядный процессор Intel Itanium и Alpha EV8 разработки Compaq, поддерживают кэш-память третьего уровня; в обоих предполагается и в дальнейшем использовать такую архитектуру шины для организации эффективной передачи данных.

Кроме того, отдельная кэш-память дает возможность реализовать более эффективную многопроцессорную обработку в настольных ПК и на серверах, содержащих более одного процессора. Если процессоры не имеют собственных резервов кэш-памяти, то им приходится разделять центральный пул оперативной памяти со своими «коллегами», и это может привести к снижению общей производительности компьютерной системы, поскольку процессоры будут вынуждены конкурировать за ресурсы.

«Все понимают, что данное решение лучше, чем применение системной шины, — заметил Крюэлл. — Совместное использование полосы пропускания с системной памятью нельзя считать оптимальным».

Шины твоей машины

Поделитесь материалом с коллегами и друзьями