Определение

Процессор цифровой обработки сигналов (digital signal processor — DSP) — это специализированный программируемый микропроцессор, предназначенный для манипулирования в реальном масштабе времени потоком цифровых данных. DSP-процессоры широко используются для обработки потоков графической информации, аудио- и видеосигналов.

Любой современный компьютер оснащен центральным процессором и только немногие — процессором цифровой обработки сигналов (DSP — digital signal processor). Центральный процессор, очевидно, представляет собой цифровую систему и обрабатывает цифровые данные, поэтому на первый взгляд неясна разница между цифровыми данными и цифровыми сигналами, то есть теми сигналами, которые обрабатывает DSP-процессор.

К цифровым сигналам, в общем случае, естественно отнести все потоки цифровой информации, которые формируются в процессе телекоммуникаций. Главное, что отличает эту информацию, — она не обязательно заносится в память (и поэтому может оказаться недоступной в будущем), следовательно, обрабатывать ее нужно в режиме реального времени.

Число источников цифровой информации практически неограниченно. Так, например, загружаемые файлы в формате MP3 содержат цифровые сигналы, собственно и представляющие звукозапись. В некоторых камкодерах выполняется оцифровка видеосигналов и их запись в цифровом формате. В дорогих моделях беспроводных и сотовых телефонов перед передачей также производится преобразование голоса в цифровой сигнал.

Вариации на тему

DSP-процессоры принципиально отличаются от микропроцессоров, образующих центральный процессор настольного компьютера. По роду своей деятельности центральному процессору приходится выполнять объединяющие функции. Он должен управлять работой различных компонентов аппаратного обеспечения компьютера, таких как дисководы, графические дисплеи и сетевой интерфейс, с тем чтобы обеспечить их согласованную работу.

Это означает, что центральные процессоры настольных компьютеров имеют сложную архитектуру, поскольку должны поддерживать такие базовые функции, как защита памяти, целочисленная арифметика, операции с плавающей запятой и обработка векторной графики.

В итоге типичный современный центральный процессор поддерживает несколько сот команд, которые обеспечивают выполнение всех этих функций. Следовательно, нужен модуль декодирования команд, который позволял бы реализовывать сложный словарь команд, а также множество интегральных схем. Они, собственно, и должны выполнять действия, определяемые командами. Иными словами, типичный процессор в настольном компьютере содержит десятки миллионов транзисторов.

DSP-процессор, напротив, должен быть «узким специалистом». Его единственная задача — изменять поток цифровых сигналов, и делать это быстро. DSP-процессор состоит главным образом из высокоскоростных аппаратных схем, выполняющих арифметические функции и манипулирующих битами, оптимизированных с тем, чтобы быстро изменять большие объемы данных.

В силу этого набор команд у DSP куда меньше, чем у центрального процессора настольного компьютера; их число не превышает 80. Это значит, что для DSP требуется облегченный декодер команд и гораздо меньшее число исполнительных устройств. Кроме того, все исполнительные устройства в конечном итоге должны поддерживать высокопроизводительные арифметические операции. Таким образом, типичный DSP-процессор состоит не более чем из нескольких сот тысяч транзисторов.

Являясь узкоспециализированным, DSP-процессор отлично справляется со своей работой. Его математические функции позволяют непрерывно принимать и изменять цифровой сигнал (такой, как звукозаписи в MP3 или запись разговора по сотовому телефону), не тормозя передачу информации и не теряя ее. Для повышения пропускной способности DSP-процессор оснащается дополнительными внутренними шинами данных, которые обеспечивают более быстрый перенос данных между арифметическими модулями и интерфейсами процессора.

Зачем нужны DSP-процессоры?

Специфические возможности DSP-процессора в части обработки информации делают его идеальным средством для многих приложений. Используя алгоритмы, основанные на соответствующем математическом аппарате, DSP-процессор может воспринимать цифровой сигнал и выполнять операции свертки для усиления или подавления тех или иных свойств сигнала.

В силу того что в DSP-процессорах значительно меньше транзисторов, чем в центральных процессорах, они потребляют меньше энергии, что позволяет использовать их в продуктах, работающих от батарей. Крайне упрощается и их производство, поэтому они находят себе применение в недорогих устройствах. Сочетание низкого энергопотребления и невысокая стоимость обусловливает применение DSP-процессоров в сотовых телефонах и в роботах-игрушках.

Впрочем, спектр их применения этим далеко не ограничивается. В силу большого числа арифметических модулей, наличия интегрированной на кристалле памяти и дополнительных шин данных часть DSP-процессоров могут использоваться для поддержки многопроцессорной обработки. Они могут выполнять сжатие/распаковку «живого видео» при передаче по Internet. Подобные высокопроизводительные DSP-процессоры часто применяются в оборудовании для организации видеоконференций.


Внутри DSP

Приведенная здесь диаграмма иллюстрирует строение ядра процессора Motorola DSP 5680x. Раздельные внутренние шины команд, данных и адресов способствуют резкому повышению пропускной способности вычислительной системы. Наличие вторичной шины данных позволяет арифметическому устройству считать два значения, перемножить их и выполнить операцию накопления результата за один такт процессора.

Поделитесь материалом с коллегами и друзьями