Тема номера

Машинное обучение для планирования запросов

Рост объемов данных требует от СУБД увеличения производительности выполнения запросов. Оптимизация плана выполнения запроса с использованием средств машинного обучения позволяет в разы уменьшить время его обработки.

Практические аспекты машинного обучения

Сегодня с машинным обучением связывают много надежд, однако успешность его применения определяется не только выбором адекватного задаче алгоритма, но и правильными шагами на этапах планирования, разработки и внедрения модели.

Оценка компетентностей студентов на основе анализа социальных сетей

В третьем поколении Федеральных государственных образовательных стандартов высшего профессионального образования задачи обучения формулируются в терминах компетентностей учащихся, что делает актуальной задачу их оценки. На помощь приходят средства машинного обучения, позволяющие оценить компетентности студентов на основе анализа их поведения в социальных сетях.

Машинное обучение в системах хранения Большого адронного коллайдера

Алгоритмы машинного обучения все шире используются для увеличения производительности гибридных систем хранения данных. Классификации, регрессии и анализ временных рядов помогают выбрать тип хранилища и упорядочить в нем размещение файлов.

Экзабайтное хранилище научных данных

Сегодня только в ходе одного эксперимента в области физики высоких энергий генерируется такой объем метаданных, который сравним с объемом данных экспериментов, полученных за весь XX век. Однако для организации хранения и эффективного доступа к этим метаданным прежние реляционные технологии уже непригодны. Объемы метаданных

Перенос параллельных программ без потери эффективности

Аппаратные архитектуры меняются быстрее программ. Рано или поздно возникает необходимость их переноса, однако данная задача, хорошо решаемая для последовательного кода, усложняется в случае параллельных программ, которые должны работать эффективно и на новой архитектуре. Параметризация программ позволит управлять отображением кода на иерархию памяти конкретной вычислительной системы с учетом возможностей параллелизма.

Анализ данных социальных сетей

Социальные сети могут стать источником дополнительных данных о клиентах, однако для его использования требуются специализированные инструменты. Открытые технологии из стека Hadoop позволяют строить платформы, способные в режиме массовой обработки извлекать ценную информацию для обогащения профилей клиентов.

Аналитика реального времени для ситуационного центра

Система управления кластером Hadoop YARN значительно повышает надежность и гибкость технологии MapReduce, позволяя в оперативной памяти проводить распределенную потоковую обработку данных, а значит, строить аналитические системы реального времени, используемые, например, в ситуационных центрах.

Анализ работы телекоммуникационной системы

Эффективность анализа данных о функционировании телекоммуникационного оборудования определяется возможностями системы сбора и обработки этих данных, объемы которых могут увеличиваться экспоненциально. Как выполнить глубокий анализ поведения сетевого оборудования в условиях лавинообразного роста показаний телеметрии?

Системы для Больших Данных: конвергенция архитектур

Проектирование архитектур систем работы с Большими Данными связано с множеством трудностей. В частности, архитектуру распределенного ПО надо тесно увязать со структурами данных и архитектурой развертывания. Чтобы удовлетворить требования к качеству, при проектировании системы нужно учитывать особенности всех трех архитектур одновременно.